Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38585887

RESUMO

Metabolites and metabolic co-factors can shape the innate immune response, though the pathways by which these molecules adjust inflammation remain incompletely understood. Here we show that the metabolic cofactor Coenzyme A (CoA) enhances IL-4 driven alternative macrophage activation [m(IL-4)] in vitro and in vivo. Unexpectedly, we found that perturbations in intracellular CoA metabolism did not influence m(IL-4) differentiation. Rather, we discovered that exogenous CoA provides a weak TLR4 signal which primes macrophages for increased receptivity to IL-4 signals and resolution of inflammation via MyD88. Mechanistic studies revealed MyD88-linked signals prime for IL-4 responsiveness, in part, by reshaping chromatin accessibility to enhance transcription of IL-4-linked genes. The results identify CoA as a host metabolic co-factor that influences macrophage function through an extrinsic TLR4-dependent mechanism, and suggests that damage-associated molecular patterns (DAMPs) can prime macrophages for alternative activation and resolution of inflammation.

2.
Cancer Cell ; 41(12): 2066-2082.e9, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37995683

RESUMO

Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.


Assuntos
Carcinoma de Células Pequenas , Neoplasias Pulmonares , Neoplasias da Próstata , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Neoplasias Pulmonares/genética , Carcinoma de Células Pequenas/genética , Fatores de Transcrição/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transdiferenciação Celular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Carcinoma de Pequenas Células do Pulmão/genética
3.
Cancer Cell ; 41(6): 1048-1060.e9, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37236196

RESUMO

Malignant tumors exhibit heterogeneous metabolic reprogramming, hindering the identification of translatable vulnerabilities for metabolism-targeted therapy. How molecular alterations in tumors promote metabolic diversity and distinct targetable dependencies remains poorly defined. Here we create a resource consisting of lipidomic, transcriptomic, and genomic data from 156 molecularly diverse glioblastoma (GBM) tumors and derivative models. Through integrated analysis of the GBM lipidome with molecular datasets, we identify CDKN2A deletion remodels the GBM lipidome, notably redistributing oxidizable polyunsaturated fatty acids into distinct lipid compartments. Consequently, CDKN2A-deleted GBMs display higher lipid peroxidation, selectively priming tumors for ferroptosis. Together, this study presents a molecular and lipidomic resource of clinical and preclinical GBM specimens, which we leverage to detect a therapeutically exploitable link between a recurring molecular lesion and altered lipid metabolism in GBM.


Assuntos
Ferroptose , Glioblastoma , Metabolismo dos Lipídeos , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ferroptose/genética , Ferroptose/fisiologia , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Recidiva Local de Neoplasia
4.
Signal Transduct Target Ther ; 8(1): 155, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069149

RESUMO

Loss of function of the von Hippel-Lindau (VHL) tumor suppressor gene is a hallmark of clear cell renal cell carcinoma (ccRCC). The importance of heterogeneity in the loss of this tumor suppressor has been under reported. To study the impact of intratumoral VHL heterogeneity observed in human ccRCC, we engineered VHL gene deletion in four RCC models, including a new primary tumor cell line derived from an aggressive metastatic case. The VHL gene-deleted (VHL-KO) cells underwent epithelial-to-mesenchymal transition (EMT) and exhibited increased motility but diminished proliferation and tumorigenicity compared to the parental VHL-expressing (VHL+) cells. Renal tumors with either VHL+ or VHL-KO cells alone exhibit minimal metastatic potential. Combined tumors displayed rampant lung metastases, highlighting a novel cooperative metastatic mechanism. The poorly proliferative VHL-KO cells stimulated the proliferation, EMT, and motility of neighboring VHL+ cells. Periostin (POSTN), a soluble protein overexpressed and secreted by VHL non-expressing (VHL-) cells, promoted metastasis by enhancing the motility of VHL-WT cells and facilitating tumor cell vascular escape. Genetic deletion or antibody blockade of POSTN dramatically suppressed lung metastases in our preclinical models. This work supports a new strategy to halt the progression of ccRCC by disrupting the critical metastatic crosstalk between heterogeneous cell populations within a tumor.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Pulmonares , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Genes Supressores de Tumor , Neoplasias Pulmonares/genética
5.
Elife ; 82019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31169500

RESUMO

GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) within the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1-bound LPL is essential for the margination of triglyceride-rich lipoproteins (TRLs) along capillaries, allowing the lipolytic processing of TRLs to proceed. In peripheral tissues, the intravascular processing of TRLs by the GPIHBP1-LPL complex is crucial for the generation of lipid nutrients for adjacent parenchymal cells. GPIHBP1 is absent from the capillaries of the brain, which uses glucose for fuel; however, GPIHBP1 is expressed in the capillaries of mouse and human gliomas. Importantly, the GPIHBP1 in glioma capillaries captures locally produced LPL. We use NanoSIMS imaging to show that TRLs marginate along glioma capillaries and that there is uptake of TRL-derived lipid nutrients by surrounding glioma cells. Thus, GPIHBP1 expression in gliomas facilitates TRL processing and provides a source of lipid nutrients for glioma cells.


Assuntos
Glioma/metabolismo , Lipoproteínas/metabolismo , Receptores de Lipoproteínas/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Capilares/metabolismo , Isótopos de Carbono/metabolismo , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Glioma/irrigação sanguínea , Glioma/patologia , Glioma/ultraestrutura , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Humanos , Lipase Lipoproteica/metabolismo , Camundongos Endogâmicos C57BL , Triglicerídeos/metabolismo
6.
Cancer Res ; 79(10): 2748-2760, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30885978

RESUMO

Although the majority of adult tissues express only hexokinase 1 (HK1) for glycolysis, most cancers express hexokinase 2 (HK2) and many coexpress HK1 and HK2. In contrast to HK1+HK2+ cancers, HK1-HK2+ cancer subsets are sensitive to cytostasis induced by HK2shRNA knockdown and are also sensitive to synthetic lethality in response to the combination of HK2shRNA knockdown, an oxidative phosphorylation (OXPHOS) inhibitor diphenyleneiodonium (DPI), and a fatty acid oxidation (FAO) inhibitor perhexiline (PER). The majority of human multiple myeloma cell lines are HK1-HK2+. Here we describe an antisense oligonucleotide (ASO) directed against human HK2 (HK2-ASO1), which suppressed HK2 expression in human multiple myeloma cell cultures and human multiple myeloma mouse xenograft models. The HK2-ASO1/DPI/PER triple-combination achieved synthetic lethality in multiple myeloma cells in culture and prevented HK1-HK2+ multiple myeloma tumor xenograft progression. DPI was replaceable by the FDA-approved OXPHOS inhibitor metformin (MET), both for synthetic lethality in culture and for inhibition of tumor xenograft progression. In addition, we used an ASO targeting murine HK2 (mHK2-ASO1) to validate the safety of mHK2-ASO1/MET/PER combination therapy in mice bearing murine multiple myeloma tumors. HK2-ASO1 is the first agent that shows selective HK2 inhibition and therapeutic efficacy in cell culture and in animal models, supporting clinical development of this synthetically lethal combination as a therapy for HK1-HK2+ multiple myeloma. SIGNIFICANCE: A first-in-class HK2 antisense oligonucleotide suppresses HK2 expression in cell culture and in in vivo, presenting an effective, tolerated combination therapy for preventing progression of HK1-HK2+ multiple myeloma tumors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/10/2748/F1.large.jpg.


Assuntos
Hexoquinase/genética , Mieloma Múltiplo/patologia , Oligonucleotídeos Antissenso/farmacologia , Mutações Sintéticas Letais , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Nucl Med ; 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880505

RESUMO

Although absent in most adult tissues, hexokinase 2 (HK2) is expressed in a majority of tumors and contributes to increased glucose consumption and to in vivo tumor 18F-FDG PET signaling. Methods: Both HK2 knockdown and knockout approaches were used to investigate the role of HK2 in cancer cell proliferation, in vivo xenograft tumor progression and 18F-FDG tumor accumulation. BioProfiler analysis monitored cell culture glucose consumption and lactate production; 18F-FDG PET/CT monitored in vivo tumor glucose accumulation. Cancer Cell Line Encyclopedia data were analyzed for HK1 and HK2 expression. Results: Neither cell proliferation in culture nor xenograft tumor progression are inhibited by HK2 knockdown or knockout in cancer cells that express HK1 and HK2. However, cancer subsets from a variety of tissues of origin express only HK2, but not HK1. In contrast to HK1+HK2+ cancers, HK2 knockdown in HK1-HK2+ cancer cells results in inhibition of cell proliferation, colony formation and xenograft tumor progression. Moreover, HK1KOHK2+ cancer cells are susceptible to HK2 inhibition, in contrast to their isogenic HK1+HK2+ parental cells. Conclusion: HK1 and HK2 expression are redundant in tumors; either can provide sufficient aerobic glycolysis for tumor growth; despite a reduction in 18F-FDG PET signal. Therapeutic HK2 inhibition is likely to be restricted to HK1-HK2+ tumor subsets, but stratification of tumors that express HK2, but not HK1, should identify tumors treatable with emerging HK2 specific inhibitors.

8.
Nat Med ; 23(11): 1342-1351, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29035366

RESUMO

Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies.


Assuntos
Apoptose , Neoplasias Encefálicas/metabolismo , Citoplasma/metabolismo , Glioblastoma/metabolismo , Glucose/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Neoplasias Encefálicas/patologia , Receptores ErbB/metabolismo , Feminino , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...